# -*- coding: utf-8 -*-
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import os
import re
from typing import (
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)

from google.api_core import client_options as client_options_lib
from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.auth import credentials as ga_credentials  # type: ignore
from google.auth.exceptions import MutualTLSChannelError  # type: ignore
from google.auth.transport import mtls  # type: ignore
from google.auth.transport.grpc import SslCredentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1beta2 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.Retry, object]  # type: ignore

from google.ai.generativelanguage_v1beta2.types import discuss_service

from .transports.base import DEFAULT_CLIENT_INFO, DiscussServiceTransport
from .transports.grpc import DiscussServiceGrpcTransport
from .transports.grpc_asyncio import DiscussServiceGrpcAsyncIOTransport
from .transports.rest import DiscussServiceRestTransport


class DiscussServiceClientMeta(type):
    """Metaclass for the DiscussService client.

    This provides class-level methods for building and retrieving
    support objects (e.g. transport) without polluting the client instance
    objects.
    """

    _transport_registry = (
        OrderedDict()
    )  # type: Dict[str, Type[DiscussServiceTransport]]
    _transport_registry["grpc"] = DiscussServiceGrpcTransport
    _transport_registry["grpc_asyncio"] = DiscussServiceGrpcAsyncIOTransport
    _transport_registry["rest"] = DiscussServiceRestTransport

    def get_transport_class(
        cls,
        label: Optional[str] = None,
    ) -> Type[DiscussServiceTransport]:
        """Returns an appropriate transport class.

        Args:
            label: The name of the desired transport. If none is
                provided, then the first transport in the registry is used.

        Returns:
            The transport class to use.
        """
        # If a specific transport is requested, return that one.
        if label:
            return cls._transport_registry[label]

        # No transport is requested; return the default (that is, the first one
        # in the dictionary).
        return next(iter(cls._transport_registry.values()))


class DiscussServiceClient(metaclass=DiscussServiceClientMeta):
    """An API for using Generative Language Models (GLMs) in dialog
    applications.
    Also known as large language models (LLMs), this API provides
    models that are trained for multi-turn dialog.
    """

    @staticmethod
    def _get_default_mtls_endpoint(api_endpoint):
        """Converts api endpoint to mTLS endpoint.

        Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to
        "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively.
        Args:
            api_endpoint (Optional[str]): the api endpoint to convert.
        Returns:
            str: converted mTLS api endpoint.
        """
        if not api_endpoint:
            return api_endpoint

        mtls_endpoint_re = re.compile(
            r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?"
        )

        m = mtls_endpoint_re.match(api_endpoint)
        name, mtls, sandbox, googledomain = m.groups()
        if mtls or not googledomain:
            return api_endpoint

        if sandbox:
            return api_endpoint.replace(
                "sandbox.googleapis.com", "mtls.sandbox.googleapis.com"
            )

        return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com")

    DEFAULT_ENDPOINT = "generativelanguage.googleapis.com"
    DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__(  # type: ignore
        DEFAULT_ENDPOINT
    )

    @classmethod
    def from_service_account_info(cls, info: dict, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            info.

        Args:
            info (dict): The service account private key info.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            DiscussServiceClient: The constructed client.
        """
        credentials = service_account.Credentials.from_service_account_info(info)
        kwargs["credentials"] = credentials
        return cls(*args, **kwargs)

    @classmethod
    def from_service_account_file(cls, filename: str, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            file.

        Args:
            filename (str): The path to the service account private key json
                file.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            DiscussServiceClient: The constructed client.
        """
        credentials = service_account.Credentials.from_service_account_file(filename)
        kwargs["credentials"] = credentials
        return cls(*args, **kwargs)

    from_service_account_json = from_service_account_file

    @property
    def transport(self) -> DiscussServiceTransport:
        """Returns the transport used by the client instance.

        Returns:
            DiscussServiceTransport: The transport used by the client
                instance.
        """
        return self._transport

    @staticmethod
    def model_path(
        model: str,
    ) -> str:
        """Returns a fully-qualified model string."""
        return "models/{model}".format(
            model=model,
        )

    @staticmethod
    def parse_model_path(path: str) -> Dict[str, str]:
        """Parses a model path into its component segments."""
        m = re.match(r"^models/(?P<model>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_billing_account_path(
        billing_account: str,
    ) -> str:
        """Returns a fully-qualified billing_account string."""
        return "billingAccounts/{billing_account}".format(
            billing_account=billing_account,
        )

    @staticmethod
    def parse_common_billing_account_path(path: str) -> Dict[str, str]:
        """Parse a billing_account path into its component segments."""
        m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_folder_path(
        folder: str,
    ) -> str:
        """Returns a fully-qualified folder string."""
        return "folders/{folder}".format(
            folder=folder,
        )

    @staticmethod
    def parse_common_folder_path(path: str) -> Dict[str, str]:
        """Parse a folder path into its component segments."""
        m = re.match(r"^folders/(?P<folder>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_organization_path(
        organization: str,
    ) -> str:
        """Returns a fully-qualified organization string."""
        return "organizations/{organization}".format(
            organization=organization,
        )

    @staticmethod
    def parse_common_organization_path(path: str) -> Dict[str, str]:
        """Parse a organization path into its component segments."""
        m = re.match(r"^organizations/(?P<organization>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_project_path(
        project: str,
    ) -> str:
        """Returns a fully-qualified project string."""
        return "projects/{project}".format(
            project=project,
        )

    @staticmethod
    def parse_common_project_path(path: str) -> Dict[str, str]:
        """Parse a project path into its component segments."""
        m = re.match(r"^projects/(?P<project>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_location_path(
        project: str,
        location: str,
    ) -> str:
        """Returns a fully-qualified location string."""
        return "projects/{project}/locations/{location}".format(
            project=project,
            location=location,
        )

    @staticmethod
    def parse_common_location_path(path: str) -> Dict[str, str]:
        """Parse a location path into its component segments."""
        m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path)
        return m.groupdict() if m else {}

    @classmethod
    def get_mtls_endpoint_and_cert_source(
        cls, client_options: Optional[client_options_lib.ClientOptions] = None
    ):
        """Return the API endpoint and client cert source for mutual TLS.

        The client cert source is determined in the following order:
        (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the
        client cert source is None.
        (2) if `client_options.client_cert_source` is provided, use the provided one; if the
        default client cert source exists, use the default one; otherwise the client cert
        source is None.

        The API endpoint is determined in the following order:
        (1) if `client_options.api_endpoint` if provided, use the provided one.
        (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the
        default mTLS endpoint; if the environment variable is "never", use the default API
        endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
        use the default API endpoint.

        More details can be found at https://google.aip.dev/auth/4114.

        Args:
            client_options (google.api_core.client_options.ClientOptions): Custom options for the
                client. Only the `api_endpoint` and `client_cert_source` properties may be used
                in this method.

        Returns:
            Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the
                client cert source to use.

        Raises:
            google.auth.exceptions.MutualTLSChannelError: If any errors happen.
        """
        if client_options is None:
            client_options = client_options_lib.ClientOptions()
        use_client_cert = os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false")
        use_mtls_endpoint = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto")
        if use_client_cert not in ("true", "false"):
            raise ValueError(
                "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`"
            )
        if use_mtls_endpoint not in ("auto", "never", "always"):
            raise MutualTLSChannelError(
                "Environment variable `GOOGLE_API_USE_MTLS_ENDPOINT` must be `never`, `auto` or `always`"
            )

        # Figure out the client cert source to use.
        client_cert_source = None
        if use_client_cert == "true":
            if client_options.client_cert_source:
                client_cert_source = client_options.client_cert_source
            elif mtls.has_default_client_cert_source():
                client_cert_source = mtls.default_client_cert_source()

        # Figure out which api endpoint to use.
        if client_options.api_endpoint is not None:
            api_endpoint = client_options.api_endpoint
        elif use_mtls_endpoint == "always" or (
            use_mtls_endpoint == "auto" and client_cert_source
        ):
            api_endpoint = cls.DEFAULT_MTLS_ENDPOINT
        else:
            api_endpoint = cls.DEFAULT_ENDPOINT

        return api_endpoint, client_cert_source

    def __init__(
        self,
        *,
        credentials: Optional[ga_credentials.Credentials] = None,
        transport: Optional[Union[str, DiscussServiceTransport]] = None,
        client_options: Optional[Union[client_options_lib.ClientOptions, dict]] = None,
        client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
    ) -> None:
        """Instantiates the discuss service client.

        Args:
            credentials (Optional[google.auth.credentials.Credentials]): The
                authorization credentials to attach to requests. These
                credentials identify the application to the service; if none
                are specified, the client will attempt to ascertain the
                credentials from the environment.
            transport (Union[str, DiscussServiceTransport]): The
                transport to use. If set to None, a transport is chosen
                automatically.
            client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the
                client. It won't take effect if a ``transport`` instance is provided.
                (1) The ``api_endpoint`` property can be used to override the
                default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT
                environment variable can also be used to override the endpoint:
                "always" (always use the default mTLS endpoint), "never" (always
                use the default regular endpoint) and "auto" (auto switch to the
                default mTLS endpoint if client certificate is present, this is
                the default value). However, the ``api_endpoint`` property takes
                precedence if provided.
                (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable
                is "true", then the ``client_cert_source`` property can be used
                to provide client certificate for mutual TLS transport. If
                not provided, the default SSL client certificate will be used if
                present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not
                set, no client certificate will be used.
            client_info (google.api_core.gapic_v1.client_info.ClientInfo):
                The client info used to send a user-agent string along with
                API requests. If ``None``, then default info will be used.
                Generally, you only need to set this if you're developing
                your own client library.

        Raises:
            google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport
                creation failed for any reason.
        """
        if isinstance(client_options, dict):
            client_options = client_options_lib.from_dict(client_options)
        if client_options is None:
            client_options = client_options_lib.ClientOptions()
        client_options = cast(client_options_lib.ClientOptions, client_options)

        api_endpoint, client_cert_source_func = self.get_mtls_endpoint_and_cert_source(
            client_options
        )

        api_key_value = getattr(client_options, "api_key", None)
        if api_key_value and credentials:
            raise ValueError(
                "client_options.api_key and credentials are mutually exclusive"
            )

        # Save or instantiate the transport.
        # Ordinarily, we provide the transport, but allowing a custom transport
        # instance provides an extensibility point for unusual situations.
        if isinstance(transport, DiscussServiceTransport):
            # transport is a DiscussServiceTransport instance.
            if credentials or client_options.credentials_file or api_key_value:
                raise ValueError(
                    "When providing a transport instance, "
                    "provide its credentials directly."
                )
            if client_options.scopes:
                raise ValueError(
                    "When providing a transport instance, provide its scopes "
                    "directly."
                )
            self._transport = transport
        else:
            import google.auth._default  # type: ignore

            if api_key_value and hasattr(
                google.auth._default, "get_api_key_credentials"
            ):
                credentials = google.auth._default.get_api_key_credentials(
                    api_key_value
                )

            Transport = type(self).get_transport_class(transport)
            self._transport = Transport(
                credentials=credentials,
                credentials_file=client_options.credentials_file,
                host=api_endpoint,
                scopes=client_options.scopes,
                client_cert_source_for_mtls=client_cert_source_func,
                quota_project_id=client_options.quota_project_id,
                client_info=client_info,
                always_use_jwt_access=True,
                api_audience=client_options.api_audience,
            )

    def generate_message(
        self,
        request: Optional[Union[discuss_service.GenerateMessageRequest, dict]] = None,
        *,
        model: Optional[str] = None,
        prompt: Optional[discuss_service.MessagePrompt] = None,
        temperature: Optional[float] = None,
        candidate_count: Optional[int] = None,
        top_p: Optional[float] = None,
        top_k: Optional[int] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, str]] = (),
    ) -> discuss_service.GenerateMessageResponse:
        r"""Generates a response from the model given an input
        ``MessagePrompt``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta2

            def sample_generate_message():
                # Create a client
                client = generativelanguage_v1beta2.DiscussServiceClient()

                # Initialize request argument(s)
                prompt = generativelanguage_v1beta2.MessagePrompt()
                prompt.messages.content = "content_value"

                request = generativelanguage_v1beta2.GenerateMessageRequest(
                    model="model_value",
                    prompt=prompt,
                )

                # Make the request
                response = client.generate_message(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1beta2.types.GenerateMessageRequest, dict]):
                The request object. Request to generate a message
                response from the model.
            model (str):
                Required. The name of the model to use.

                Format: ``name=models/{model}``.

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            prompt (google.ai.generativelanguage_v1beta2.types.MessagePrompt):
                Required. The structured textual
                input given to the model as a prompt.
                Given a
                prompt, the model will return what it
                predicts is the next message in the
                discussion.

                This corresponds to the ``prompt`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            temperature (float):
                Optional. Controls the randomness of the output.

                Values can range over ``[0.0,1.0]``, inclusive. A value
                closer to ``1.0`` will produce responses that are more
                varied, while a value closer to ``0.0`` will typically
                result in less surprising responses from the model.

                This corresponds to the ``temperature`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            candidate_count (int):
                Optional. The number of generated response messages to
                return.

                This value must be between ``[1, 8]``, inclusive. If
                unset, this will default to ``1``.

                This corresponds to the ``candidate_count`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            top_p (float):
                Optional. The maximum cumulative probability of tokens
                to consider when sampling.

                The model uses combined Top-k and nucleus sampling.

                Nucleus sampling considers the smallest set of tokens
                whose probability sum is at least ``top_p``.

                This corresponds to the ``top_p`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            top_k (int):
                Optional. The maximum number of tokens to consider when
                sampling.

                The model uses combined Top-k and nucleus sampling.

                Top-k sampling considers the set of ``top_k`` most
                probable tokens.

                This corresponds to the ``top_k`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, str]]): Strings which should be
                sent along with the request as metadata.

        Returns:
            google.ai.generativelanguage_v1beta2.types.GenerateMessageResponse:
                The response from the model.
                This includes candidate messages and
                conversation history in the form of
                chronologically-ordered messages.

        """
        # Create or coerce a protobuf request object.
        # Quick check: If we got a request object, we should *not* have
        # gotten any keyword arguments that map to the request.
        has_flattened_params = any(
            [model, prompt, temperature, candidate_count, top_p, top_k]
        )
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # Minor optimization to avoid making a copy if the user passes
        # in a discuss_service.GenerateMessageRequest.
        # There's no risk of modifying the input as we've already verified
        # there are no flattened fields.
        if not isinstance(request, discuss_service.GenerateMessageRequest):
            request = discuss_service.GenerateMessageRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if model is not None:
                request.model = model
            if prompt is not None:
                request.prompt = prompt
            if temperature is not None:
                request.temperature = temperature
            if candidate_count is not None:
                request.candidate_count = candidate_count
            if top_p is not None:
                request.top_p = top_p
            if top_k is not None:
                request.top_k = top_k

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.generate_message]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def count_message_tokens(
        self,
        request: Optional[
            Union[discuss_service.CountMessageTokensRequest, dict]
        ] = None,
        *,
        model: Optional[str] = None,
        prompt: Optional[discuss_service.MessagePrompt] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, str]] = (),
    ) -> discuss_service.CountMessageTokensResponse:
        r"""Runs a model's tokenizer on a string and returns the
        token count.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta2

            def sample_count_message_tokens():
                # Create a client
                client = generativelanguage_v1beta2.DiscussServiceClient()

                # Initialize request argument(s)
                prompt = generativelanguage_v1beta2.MessagePrompt()
                prompt.messages.content = "content_value"

                request = generativelanguage_v1beta2.CountMessageTokensRequest(
                    model="model_value",
                    prompt=prompt,
                )

                # Make the request
                response = client.count_message_tokens(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1beta2.types.CountMessageTokensRequest, dict]):
                The request object. Counts the number of tokens in the ``prompt`` sent to a
                model.

                Models may tokenize text differently, so each model may
                return a different ``token_count``.
            model (str):
                Required. The model's resource name. This serves as an
                ID for the Model to use.

                This name should match a model name returned by the
                ``ListModels`` method.

                Format: ``models/{model}``

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            prompt (google.ai.generativelanguage_v1beta2.types.MessagePrompt):
                Required. The prompt, whose token
                count is to be returned.

                This corresponds to the ``prompt`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, str]]): Strings which should be
                sent along with the request as metadata.

        Returns:
            google.ai.generativelanguage_v1beta2.types.CountMessageTokensResponse:
                A response from CountMessageTokens.

                   It returns the model's token_count for the prompt.

        """
        # Create or coerce a protobuf request object.
        # Quick check: If we got a request object, we should *not* have
        # gotten any keyword arguments that map to the request.
        has_flattened_params = any([model, prompt])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # Minor optimization to avoid making a copy if the user passes
        # in a discuss_service.CountMessageTokensRequest.
        # There's no risk of modifying the input as we've already verified
        # there are no flattened fields.
        if not isinstance(request, discuss_service.CountMessageTokensRequest):
            request = discuss_service.CountMessageTokensRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if model is not None:
                request.model = model
            if prompt is not None:
                request.prompt = prompt

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.count_message_tokens]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def __enter__(self) -> "DiscussServiceClient":
        return self

    def __exit__(self, type, value, traceback):
        """Releases underlying transport's resources.

        .. warning::
            ONLY use as a context manager if the transport is NOT shared
            with other clients! Exiting the with block will CLOSE the transport
            and may cause errors in other clients!
        """
        self.transport.close()


DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo(
    gapic_version=package_version.__version__
)


__all__ = ("DiscussServiceClient",)
