# -*- coding: utf-8 -*-
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import functools
import re
from typing import (
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1beta2 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.Retry, object]  # type: ignore

from google.ai.generativelanguage_v1beta2.types import discuss_service

from .client import DiscussServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, DiscussServiceTransport
from .transports.grpc_asyncio import DiscussServiceGrpcAsyncIOTransport


class DiscussServiceAsyncClient:
    """An API for using Generative Language Models (GLMs) in dialog
    applications.
    Also known as large language models (LLMs), this API provides
    models that are trained for multi-turn dialog.
    """

    _client: DiscussServiceClient

    DEFAULT_ENDPOINT = DiscussServiceClient.DEFAULT_ENDPOINT
    DEFAULT_MTLS_ENDPOINT = DiscussServiceClient.DEFAULT_MTLS_ENDPOINT

    model_path = staticmethod(DiscussServiceClient.model_path)
    parse_model_path = staticmethod(DiscussServiceClient.parse_model_path)
    common_billing_account_path = staticmethod(
        DiscussServiceClient.common_billing_account_path
    )
    parse_common_billing_account_path = staticmethod(
        DiscussServiceClient.parse_common_billing_account_path
    )
    common_folder_path = staticmethod(DiscussServiceClient.common_folder_path)
    parse_common_folder_path = staticmethod(
        DiscussServiceClient.parse_common_folder_path
    )
    common_organization_path = staticmethod(
        DiscussServiceClient.common_organization_path
    )
    parse_common_organization_path = staticmethod(
        DiscussServiceClient.parse_common_organization_path
    )
    common_project_path = staticmethod(DiscussServiceClient.common_project_path)
    parse_common_project_path = staticmethod(
        DiscussServiceClient.parse_common_project_path
    )
    common_location_path = staticmethod(DiscussServiceClient.common_location_path)
    parse_common_location_path = staticmethod(
        DiscussServiceClient.parse_common_location_path
    )

    @classmethod
    def from_service_account_info(cls, info: dict, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            info.

        Args:
            info (dict): The service account private key info.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            DiscussServiceAsyncClient: The constructed client.
        """
        return DiscussServiceClient.from_service_account_info.__func__(DiscussServiceAsyncClient, info, *args, **kwargs)  # type: ignore

    @classmethod
    def from_service_account_file(cls, filename: str, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            file.

        Args:
            filename (str): The path to the service account private key json
                file.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            DiscussServiceAsyncClient: The constructed client.
        """
        return DiscussServiceClient.from_service_account_file.__func__(DiscussServiceAsyncClient, filename, *args, **kwargs)  # type: ignore

    from_service_account_json = from_service_account_file

    @classmethod
    def get_mtls_endpoint_and_cert_source(
        cls, client_options: Optional[ClientOptions] = None
    ):
        """Return the API endpoint and client cert source for mutual TLS.

        The client cert source is determined in the following order:
        (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the
        client cert source is None.
        (2) if `client_options.client_cert_source` is provided, use the provided one; if the
        default client cert source exists, use the default one; otherwise the client cert
        source is None.

        The API endpoint is determined in the following order:
        (1) if `client_options.api_endpoint` if provided, use the provided one.
        (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the
        default mTLS endpoint; if the environment variable is "never", use the default API
        endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
        use the default API endpoint.

        More details can be found at https://google.aip.dev/auth/4114.

        Args:
            client_options (google.api_core.client_options.ClientOptions): Custom options for the
                client. Only the `api_endpoint` and `client_cert_source` properties may be used
                in this method.

        Returns:
            Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the
                client cert source to use.

        Raises:
            google.auth.exceptions.MutualTLSChannelError: If any errors happen.
        """
        return DiscussServiceClient.get_mtls_endpoint_and_cert_source(client_options)  # type: ignore

    @property
    def transport(self) -> DiscussServiceTransport:
        """Returns the transport used by the client instance.

        Returns:
            DiscussServiceTransport: The transport used by the client instance.
        """
        return self._client.transport

    get_transport_class = functools.partial(
        type(DiscussServiceClient).get_transport_class, type(DiscussServiceClient)
    )

    def __init__(
        self,
        *,
        credentials: Optional[ga_credentials.Credentials] = None,
        transport: Union[str, DiscussServiceTransport] = "grpc_asyncio",
        client_options: Optional[ClientOptions] = None,
        client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
    ) -> None:
        """Instantiates the discuss service client.

        Args:
            credentials (Optional[google.auth.credentials.Credentials]): The
                authorization credentials to attach to requests. These
                credentials identify the application to the service; if none
                are specified, the client will attempt to ascertain the
                credentials from the environment.
            transport (Union[str, ~.DiscussServiceTransport]): The
                transport to use. If set to None, a transport is chosen
                automatically.
            client_options (ClientOptions): Custom options for the client. It
                won't take effect if a ``transport`` instance is provided.
                (1) The ``api_endpoint`` property can be used to override the
                default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT
                environment variable can also be used to override the endpoint:
                "always" (always use the default mTLS endpoint), "never" (always
                use the default regular endpoint) and "auto" (auto switch to the
                default mTLS endpoint if client certificate is present, this is
                the default value). However, the ``api_endpoint`` property takes
                precedence if provided.
                (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable
                is "true", then the ``client_cert_source`` property can be used
                to provide client certificate for mutual TLS transport. If
                not provided, the default SSL client certificate will be used if
                present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not
                set, no client certificate will be used.

        Raises:
            google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport
                creation failed for any reason.
        """
        self._client = DiscussServiceClient(
            credentials=credentials,
            transport=transport,
            client_options=client_options,
            client_info=client_info,
        )

    async def generate_message(
        self,
        request: Optional[Union[discuss_service.GenerateMessageRequest, dict]] = None,
        *,
        model: Optional[str] = None,
        prompt: Optional[discuss_service.MessagePrompt] = None,
        temperature: Optional[float] = None,
        candidate_count: Optional[int] = None,
        top_p: Optional[float] = None,
        top_k: Optional[int] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, str]] = (),
    ) -> discuss_service.GenerateMessageResponse:
        r"""Generates a response from the model given an input
        ``MessagePrompt``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta2

            async def sample_generate_message():
                # Create a client
                client = generativelanguage_v1beta2.DiscussServiceAsyncClient()

                # Initialize request argument(s)
                prompt = generativelanguage_v1beta2.MessagePrompt()
                prompt.messages.content = "content_value"

                request = generativelanguage_v1beta2.GenerateMessageRequest(
                    model="model_value",
                    prompt=prompt,
                )

                # Make the request
                response = await client.generate_message(request=request)

                # Handle the response
                print(response)

        Args:
            request (Optional[Union[google.ai.generativelanguage_v1beta2.types.GenerateMessageRequest, dict]]):
                The request object. Request to generate a message
                response from the model.
            model (:class:`str`):
                Required. The name of the model to use.

                Format: ``name=models/{model}``.

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            prompt (:class:`google.ai.generativelanguage_v1beta2.types.MessagePrompt`):
                Required. The structured textual
                input given to the model as a prompt.
                Given a
                prompt, the model will return what it
                predicts is the next message in the
                discussion.

                This corresponds to the ``prompt`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            temperature (:class:`float`):
                Optional. Controls the randomness of the output.

                Values can range over ``[0.0,1.0]``, inclusive. A value
                closer to ``1.0`` will produce responses that are more
                varied, while a value closer to ``0.0`` will typically
                result in less surprising responses from the model.

                This corresponds to the ``temperature`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            candidate_count (:class:`int`):
                Optional. The number of generated response messages to
                return.

                This value must be between ``[1, 8]``, inclusive. If
                unset, this will default to ``1``.

                This corresponds to the ``candidate_count`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            top_p (:class:`float`):
                Optional. The maximum cumulative probability of tokens
                to consider when sampling.

                The model uses combined Top-k and nucleus sampling.

                Nucleus sampling considers the smallest set of tokens
                whose probability sum is at least ``top_p``.

                This corresponds to the ``top_p`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            top_k (:class:`int`):
                Optional. The maximum number of tokens to consider when
                sampling.

                The model uses combined Top-k and nucleus sampling.

                Top-k sampling considers the set of ``top_k`` most
                probable tokens.

                This corresponds to the ``top_k`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, str]]): Strings which should be
                sent along with the request as metadata.

        Returns:
            google.ai.generativelanguage_v1beta2.types.GenerateMessageResponse:
                The response from the model.
                This includes candidate messages and
                conversation history in the form of
                chronologically-ordered messages.

        """
        # Create or coerce a protobuf request object.
        # Quick check: If we got a request object, we should *not* have
        # gotten any keyword arguments that map to the request.
        has_flattened_params = any(
            [model, prompt, temperature, candidate_count, top_p, top_k]
        )
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        request = discuss_service.GenerateMessageRequest(request)

        # If we have keyword arguments corresponding to fields on the
        # request, apply these.
        if model is not None:
            request.model = model
        if prompt is not None:
            request.prompt = prompt
        if temperature is not None:
            request.temperature = temperature
        if candidate_count is not None:
            request.candidate_count = candidate_count
        if top_p is not None:
            request.top_p = top_p
        if top_k is not None:
            request.top_k = top_k

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = gapic_v1.method_async.wrap_method(
            self._client._transport.generate_message,
            default_timeout=None,
            client_info=DEFAULT_CLIENT_INFO,
        )

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Send the request.
        response = await rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    async def count_message_tokens(
        self,
        request: Optional[
            Union[discuss_service.CountMessageTokensRequest, dict]
        ] = None,
        *,
        model: Optional[str] = None,
        prompt: Optional[discuss_service.MessagePrompt] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, str]] = (),
    ) -> discuss_service.CountMessageTokensResponse:
        r"""Runs a model's tokenizer on a string and returns the
        token count.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta2

            async def sample_count_message_tokens():
                # Create a client
                client = generativelanguage_v1beta2.DiscussServiceAsyncClient()

                # Initialize request argument(s)
                prompt = generativelanguage_v1beta2.MessagePrompt()
                prompt.messages.content = "content_value"

                request = generativelanguage_v1beta2.CountMessageTokensRequest(
                    model="model_value",
                    prompt=prompt,
                )

                # Make the request
                response = await client.count_message_tokens(request=request)

                # Handle the response
                print(response)

        Args:
            request (Optional[Union[google.ai.generativelanguage_v1beta2.types.CountMessageTokensRequest, dict]]):
                The request object. Counts the number of tokens in the ``prompt`` sent to a
                model.

                Models may tokenize text differently, so each model may
                return a different ``token_count``.
            model (:class:`str`):
                Required. The model's resource name. This serves as an
                ID for the Model to use.

                This name should match a model name returned by the
                ``ListModels`` method.

                Format: ``models/{model}``

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            prompt (:class:`google.ai.generativelanguage_v1beta2.types.MessagePrompt`):
                Required. The prompt, whose token
                count is to be returned.

                This corresponds to the ``prompt`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, str]]): Strings which should be
                sent along with the request as metadata.

        Returns:
            google.ai.generativelanguage_v1beta2.types.CountMessageTokensResponse:
                A response from CountMessageTokens.

                   It returns the model's token_count for the prompt.

        """
        # Create or coerce a protobuf request object.
        # Quick check: If we got a request object, we should *not* have
        # gotten any keyword arguments that map to the request.
        has_flattened_params = any([model, prompt])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        request = discuss_service.CountMessageTokensRequest(request)

        # If we have keyword arguments corresponding to fields on the
        # request, apply these.
        if model is not None:
            request.model = model
        if prompt is not None:
            request.prompt = prompt

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = gapic_v1.method_async.wrap_method(
            self._client._transport.count_message_tokens,
            default_timeout=None,
            client_info=DEFAULT_CLIENT_INFO,
        )

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Send the request.
        response = await rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    async def __aenter__(self):
        return self

    async def __aexit__(self, exc_type, exc, tb):
        await self.transport.close()


DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo(
    gapic_version=package_version.__version__
)


__all__ = ("DiscussServiceAsyncClient",)
